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Abstract. We apply quantum and semiclassical theories to differential optical collisions Na(32S1/2) + Kr
+ ~ω → Na(32P1/2,3/2) + Kr. Our results provide a basis to analyze recent experiments in which for
the first time optical collisions were investigated with angular resolution under crossed-beam conditions.
A characteristic feature of the differential cross sections is the pronounced oscillatory structure due to
interferences of different Condon paths. These Stueckelberg oscillations form an extremely sensitive probe
of the collisional dynamics and of the molecular interactions. We demonstrate perspectives to determine
geometric properties of the collision complex by excitation with polarized light. By final state analysis
nonadiabatic (spin-orbit, rotational) interactions can be studied with complete control of the path. In
summary it is shown that the method of differential detection of optical collisions opens a variety of new
accesses to atomic and molecular subcollisions.

PACS. 32.70.-n Intensities and shapes of atomic spectral lines – 34.20.Cf Interatomic potentials and forces
– 34.50.Rk Laser modified scattering and reactions

1 Introduction

In an optical collision a collision pair absorbs or emits
a photon and undergoes a transition into another elec-
tronic state. Such processes are of interest both for the
investigation of the detailed collision dynamics of atoms
and molecules and for the collisional redistribution of light
[1–6]. For the former aspect it is important to realize that
in an optical collision the dynamics evolves on at least
two electronic potentials of the quasimolecule. The ex-
tent to which the process probes a particular potential is
controled by the laser frequency and the Franck-Condon
principle. Since the optical transition thus normally oc-
curs at well-defined distances of the collision partners, op-
tical collisions provide an excellent method to study par-
tial collisional events or equivalently the dynamics of col-
lisions on a subcollisional time scale. The study of optical
collisions is usually carried out with CW or pulsed light
sources with ns time duration. At present, time-resolved
experiments of collision processes have not been reported.
However, the power of the time-domain approach is well
documented by the experimental studies of photodissocia-
tion processes (half collisions) [7–10]. Optical collisions are
often very sensitive to the long and intermediate range of
the intermolecular potentials. This opens the possibility to
test these potentials also in cases which are not readily ac-
cessible by the more conventional spectroscopic methods
[3]. Optical collision experiments in cells and their the-
oretical analysis have lead to fundamental insights into

the role of depolarization and nonadiabatic interactions
[11–13]. In the context of collisional redistribution, finally,
optical collisions play the role of the fundamental pro-
cesses determining the redistribution of light by collisions
(fluorescence, Rayleigh scattering, etc.)[4–6].

Recently remarkable experimental progress in optical
collisions of atoms has been made along several routes. De-
tailed integral optical collision spectra have been obtained
for a number of systems in cell experiments. Among them
are the optical collisions of Hg [14] and Ba [15] with rare
gas atoms. The results allow a systematic investigation
of the effect of the atom-perturber interaction. Further, it
has been possible to extend the regime of optical collisions
to transitions starting from excited atoms. In this way also
the higher lying potentials of alkali rare gas systems as well
as the higher multiplicity cases (e.g. ∆ states) become ac-
cessible [3]. Another promising development are multicolor
experiments [16] in which a fraction of the collision is se-
lected by the use of two photon energies. A large impact
for the field is expected by the very recent success to mon-
itor optical collisions under the conditions of a molecular
beam experiment [17,18]. In the present work, we analyze
the very detailed information which is contained in optical
collision spectra measured with differential detection. The
theoretical interpretation of optical collisions by the quan-
tum approach provides an almost complete view of the
detailed collision dynamics. It also is often used as a ba-
sis for comparison with other theoretical approaches, e.g.
quasistatic, semiclassical, quantum mechanical lineshape
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Fig. 1. Potential scheme for NaKr: Born-Oppenheimer (spin-
free) potentials X2Σ, B2Σ and A2Π. The X2Σ potential is
shifted by ~ω using a positive detuning +200 cm−1. The in-
set shows the adiabatic excited state potentials, calculated by
diagonalization of the sum of the spin-free potentials and the
spin-orbit interaction. The dashed and solid curves in the inset
represent the Ω = 1/2 and 3/2 states, respectively.

theories. The nonadiabatic character of optical collisions
in real systems is most adequately treated by the quantum
approach. On the other hand an at least semiquantitative
understanding of the underlying mechanisms is often pos-
sible on simpler grounds, an example being the classical
rotation model applied to depolarization in optical colli-
sions [19]. A successful interpretation of optical collision
spectra often however depends much on the availability of
accurate information on the potentials and couplings.

In this work we consider the optical collision process

Na(32S1/2) + Kr + ~ω → Na(32P1/2,3/2) + Kr

for which differential cross sections have recently been
measured for the first time under crossed beam condi-
tions. The relevant potential curves are shown in Fig-
ure 1. By varying the laser detuning ∆ω = ω−ωres on the
blue side of the Na(32S1/2 → 32P1/2) D1 resonance line

(ωres/2πc = 16956.2 cm−1), we are sensitive to transitions
from the ground X2Σ state to the repulsive, excited B2Σ
state of NaKr. Similar for negative detuning the transition
is to the attractive A2Π state. For positive detuning, ex-
periment and theory show the occurence of pronounced,
regular Stueckelberg oscillations in the differential cross
sections. These result from the coherent superposition of
paths in which the excitation occurs either for the in- or
the out-going motion of the collision pair. Similar struc-
tures are quite frequent in atomic collisions, e.g. in dif-
ferential cross sections for collisional electronic excitation,
and in oscillatory lineshapes in Feshbach resonances [20,
21]. The Stueckelberg oscillations observed in differential
optical collision spectra provide a wealth of detailed in-
formation on the collision dynamics that is absent in the
more traditional experiments using cells.

In the following we outline the theoretical basis of
the quantum and semiclassical approaches to differential
optical collision cross sections (Sect. 2). Using the
Stueckelberg patterns in the cross sections, we obtain an
improved potential for the repulsive B2Σ state in NaKr
(Sect. 3.1). In Section 3.2 we demonstrate how information
on collision geometry at the instant of excitation is ob-
tained with polarized light. The detailed properties of the
collision products (alignment, orientation, population ra-
tio of the fine-structure components) and their relation to
nonadiabatic processes are considered in Section 3.3.
Finally Section 4 summarizes the new possibilities to ob-
serve atomic and molecular collisions.

2 Quantum and semiclassical theories of
optical collisions

2.1 Dressed-state coupled-channels theory

We consider optical collisions in alkali rare-gas systems

A(2SJ0,m0) + X + ~ω → A(2PJ,mJ ) + X (1)

with J0 = 1/2 for the ground and J = 1/2 or 3/2 for the
excited states. The quantum mechanical Hamilton opera-
tor is [22]

H = −
~2

2mR

d2

dR2
R+

l2

2mR2
+Hel+Vso+Hph+Vrad. (2)

The first terms describe the atomic collision system, Hph

represents the optical field, and Vrad is the interaction.
The operator of the collision system is independent of the
field and is a sum of the radial and centrifugal parts of the
nuclear kinetic energy, the electronic (Coulomb) Hamilto-
nian Hel and the spin-orbit coupling Vso. For nωq photons
in a volume V with polarization q = 0,±1 one may write,
in second-quantized form,

Hph =~ω a+
q aq = ~ω nωq

(3)

Vrad =
e

me

(
2π~
ωV

)1/2

(aq + a+
q )pq.

Here we consider only the dipole coupling to represent
Vrad. The dynamics of the collision system in the excited
state manifold arising from the molecular A2Π and B2Σ
states depends much on the R-dependent relative magni-
tude of the electrostatic interaction and the spin-orbit and
rotational couplings expressed by the operators

Vso = g L · S (4)

and

Hrot =
l2

2mR2
=

(J − L− S)2

2mR2
· (5)

In the last equation J is the total angular momentum
of the collision system formed by coupling the electronic
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orbital momentum L and spin S, (with J = L + S) with
the angular momentum of the internuclear motion l. We
expand the wave function in the form

Ψ = R−1
∑
JMlJn

|JMlJ > |n > uJMlJn(R) (6)

where |JMlJ > represents the electronic and the nuclear
rotational motion, |n > the state of the photon field, and
the functions u(R) describe the radial nuclear motion. Af-
ter substitution into the Schrödinger equation with the
Hamiltonian of equation (2) we obtain a set of coupled-
channels equations for the radial functions[

d2

dR2
+ k2(R)−

l(l+ 1)

R2

]
uJMlJn(R) =

2m

~2

∑
J ′M′l′J′n′

V JMlJn
J ′M′l′J′n′uJ ′M′l′J′n′(R). (7)

In equation (6) we used a Hund’s coupling case e basis for
the molecular channel functions defined by

|JMlJ > =
∑
mlmJ

C(JlJ ;mJmlM)Ylml(θφ)|JmJβ >

=
∑
Ω

(−)J−ΩC(JJ l;ΩΩ̄0)|JMΩJ > (8)

where the functions |JMΩJ >,

|JMΩJ >=

(
2J + 1

4π

)1/2

DJ∗MΩ(φθ0)|JΩ >, (9)

are given in terms of the Wigner rotation matrices DJ∗MΩ
and electronic functions |JΩ > defined in the molecu-
lar frame. M and Ω are the respective components of
total angular momentum along the space- and molecule-
fixed quantization axes. In the molecular frame Ω is also
the projection of electronic angular momentum. To fully
characterize the electronic and the resulting molecular
channel functions additional quantum numbers β may in
general be necessary. The electronic functions |JΩ > in
equation (9) are formed by coupling L and S in the R-
dependent (spin-uncoupled) electronic Born-Oppenheimer
functions exactly as in the case of free atoms

|JΩ >=
∑
ΛΣ

< LS ΛΣ|J Ω > |ΛΣΩ > . (10)

In this way the electronic functions converge to atomic
states at large separations. At finite R the functions |JΩ >
will however differ from the adiabatic electronic terms
which would be obtained by diagonalizing Hel and Vso

at each R. Here there is no practical advantage of the use
of adiabatic electronic states since the transformation is
R-dependent and leads to the unfavourable appearance of
new radial coupling terms. In the representation of the
molecular channel functions given by equations (8) and
(9) the Hamiltonian matrix is completely determined in

terms of electronic matrix elements in a molecular frame.
Their explicit expressions are given in Appendix A.

In optical collisions the total angular momentum J
of the molecular system is no longer conserved. In the
weak-field case the absorption or emission of a photon
with polarization q leads to a change of J by either ±1
or 0, exactly as in the case of the P , Q and R-branches in
molecular spectroscopy

|J ′ −J | ≤ 1; M ′ = M ± q. (11)

In the present case only the linear effect of the field is of
interest since the photons are used to probe rather than to
modify the dynamics of the collision. As a most important
consequence of the linearity in the field it is then possible
to completely separate the different branches J → J ′ and
theM dependence in the coupled-channels equations. This
is seen from the appearance of the factor C(J 1J ′;MqM ′)
in equation (40) and leads to a considerable reduction of
the computational effort [22].

For the final determination of the scattering matrices
it is convenient to introduce a standard atomic dressed
state basis discussed in Appendix B. In the linear case
the asymptotic behavior of the wave function is chosen
independent of the M quantum number

uJ lJJ ′l′J′(R) ∼ δJJ ′δll′δJJ′
√
kJ jl(kJR)

−

√
kJ′

2
TJ lJJ ′l′J′ hl′(kJ′R) (12)

and the Bessel functions hl and jl behave for x→∞ like

jl(x) −−−−→
x→∞

sin(x− lπ/2)

x
(13)

hl(x) −−−−→
x→∞

−i exp[i(x− lπ/2)]

x
·

This allows the determination of the scattering T matri-
ces at internuclear separations where the long-range cen-
trifugal potential has not yet vanished as exploited in the
well-known partial wave expansion techniques.

2.2 Scattering amplitudes; differential cross sections
and multipoles

With the expression for the scattering amplitude

fpJ0m0→Jm
(R̂,k0)

=
2πi

k0

∑
J0J

∑
l0lml0ml

il0−lC(J0l0J0;m0ml0M0)

× C(JlJ ;mmlM)Y ∗l0ml0 (k̂0)Ylml(R̂)TJMlJn
J0M0l0J0n0

(14)

one obtains the differential optical collision cross sections

dσJ0m0→Jm

dΩ
= |fpJ0m0→Jm

(R̂,k0)|2. (15)
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Fig. 2. Trajectories and Condon vectors for a scattering angle
of 45◦. The dots on the trajectories are the Condon transition
points, their area is proportional to the semiclassical weight
factor, see equation (21). a) positive detuning +200 cm−1, ki-
netic energy ε = 200 cm−1; b) negative detuning −200 cm−1,
ε = 800 cm−1.

The full T matrix required in equation (14) is obtained
from the reduced T -matrix of equation (12) which is in-
dependent of M0 and M by

TJMlJn
J0M0l0J0n0

= δn0n+1 T
J lJ
J0l0J0

C(J01J ;M0pM)Ep. (16)

The expression for the scattering amplitude simplifies by
choosing a space-fixed coordinate system in which the z
axis coincides with the direction of k̂0 (collision frame).
Then

fpJ0m0→Jm
(R̂) =

2πi

k0

∑
J0J

∑
l0l

il0−l
√

2l0 + 1

4π

× C(J0l0J0;m00m0)C(JlJ ;mmlM) (17)

× Ylml(R̂)TJ lJJ0l0J0
C(J01J ;m0pM) δn0n+1Ep

using Y ∗l0ml0
(0̂) = δml00

√
(2l0 + 1)/4π. Of course

M = m0 + p and ml = m0 + p − m are given by the

explicit components m0, m and p. In most cases the ini-
tial state is (spin-) unpolarized and the differential optical
cross sections dσJ0m0→Jm/dΩ have to be averaged over
the m0 components of the initial state. Further, as long as
the total intensities of the atomic J levels are monitored
independent of polarization effects, only the m-summed
differential cross sections are of interest. They are

IJ0→J(θ) =
dσJ0→J

dΩ
=

1

2J0 + 1

∑
m,m0

dσJ0m0→Jm

dΩ
· (18)

The absolute scaling for the optical collision spectra fol-
lows from the linear dependence of all cross sections on
the laser intensity Iω = |Ep|2c/8π. This is used here to
define e.g. a differential cross section dq/dΩ for absorp-
tion of a photon per collision pair (units e.g. A5/srad) by
equations (17) and (42)

nωc
dq

dΩ
= v

dσ

dΩ
(19)

and v is the velocity of the collision.
The polarization of the scattered excited atoms is given

by the multipoles of the atomic density matrix

dρkqJ
dΩ

=
1

2J0 + 1

∑
m0,m

(−)k−J−mC(JJk;−mm′q)

× fpJ0m0→Jm
(R̂)fp∗J0m0→Jm′

(R̂). (20)

For optical collisions in a cell experiment the collisions
occur isotropically and coherences (q 6= 0) vanish. In the
present situation the full multipole tensors contribute.

2.3 Semiclassical theory

In a semiclassical description of optical collisions, one ex-
ploits the close relation with the case of coupling between
two diabatic states induced by an interaction V12(R).
For the present situation the diabatic states are the
“molecule + radiation field” states V1(R) = Vg(R) + n~ω
and V2(R) = Ve(R) + (n − 1)~ω as in Figure 1, and
V12(R) = µ(R)E/2 is the dipole coupling. The optical
transition occurs essentially at the crossing of the dia-
batic curves, i.e. at the Condon distance Rc for which
~ω = Ve(Rc)−Vg(Rc). As before we will consider the case
of weak coupling by the field and further neglect in this
section the effects of spin-orbit and rotational interactions.

The classical trajectories for the optical collision switch
at the Condon distance from the ground to the upper po-
tential on either the in- or out-going motion. Examples of
classical trajectories and Condon vectors, i.e. the internu-
clear vectors Rc at the instant of the transition, are shown
in Figure 2. In most cases there are more than one trajec-
tory for a given scattering angle. In the insets of Figures 3
and 4 we also show examples of the classical deflection
functions and the angles αi of the Condon vectors with
the collision frame z axis.
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Fig. 3. Differential cross sections for excitation of B2Σ by
quantum and semiclassical methods. Heavy solid line: Quan-
tum result for summed 2P1/2 and 2P3/2 excitation, dashed
line: the corresponding semiclassical result, thin solid line:
quantum, only 2P1/2 excitation, dot- dashed line: quantum
sum 2P1/2+2P3/2 calculated with Vso = 0. All data refer to a
detuning of +200 cm−1 and a kinetic energy of 200 cm−1, the
exciting light is polarized at 90◦ in the collision plane. The inset
shows the corresponding classical deflection functions and the
angular positions of the Condon vectors. Solid and dashed lines
in the inset correspond to trajectories, for which the transition
occurs during the out- or the ingoing motion, respectively.

The semiclassical expression for the differential cross
section is in close analogy to the case of elastic scattering
[20,18]

I(θ) =
1

sin θ

∣∣∣∣∣∑
i

{pi bi/|
dΘ

dbi
|}1/2li exp(iφi)

∣∣∣∣∣
2

. (21)

The summation in equation (21) extends over all branches
of the deflection function Θ contributing to a given scat-
tering angle θ. The dependence of I(θ) on the polarization
of the exciting light enters through the factor l = eµ · ep

with eµ and ep being unit vectors in the direction of the
transition dipole and the polarization vector, respectively.
For the case of a Σ −Σ transition, eµ is along the inter-
nuclear axis, and hence li = cos(αi − αp) for linear po-
larization in the scattering plane where αp measures the
direction of the field vector. Similarly we have li = e±iαi

for right and left circular polarized light in the collision
plane.

For the excitation probability pi at the Condon point
we use the weak coupling limit of the Landau-Zener ex-
pression

p =
2πV 2

12

~vR|F |
(22)

where vR = v{1− b2/R2 − Vg(R)/ε}
1/2

and F = dV1/dR
−dV2/dR are the radial velocity and the slope of the
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Fig. 4. Differential cross sections for excitation of A2Π. The
labeling is as in Figure 3. Detuning −100 cm−1, kinetic energy
800 cm−1, excitation with light polarized perpendicularly to
the collision plane. The cross sections have been averaged over
the rapid oscillations (angular resolution 2◦). For 2P1/2 also
the cross section before averaging is shown. The inset gives
the classical deflection functions and direction of the Condon
vectors as in Figure 3.

difference potentials, respectively. All quantities in equa-
tion (22) are evaluated for R = Rc, with ε = mv2/2 being
the collision energy. The overall phase φi in equation (21)
results from a stationary phase evaluation of the quantum
mechanical scattering amplitude as

φi = Φi ± (kbiθ − π/4) + sgn(
dΘ

dbi
)π/4 + δφ (23)

and the JWKB phase shift Φ along the given trajectory is
calculated from the deflection function Θ by

Φ = k

∫
Θ(b)db.

Accordingly the sign in front of the first bracket in equa-
tion (23) is fixed by the stationary phase condition Θ±θ =
0 mod(2π) with 0 ≤ θ ≤ π. Finally an incremental phase
δφ appears in equation (23) from the passage of the cross-
ing region depending on the sign of F and whether the
transition occurs for the ingoing, δφ = π/4 sgn(F ), or
outgoing, δφ = −π/4 sgn(F ), motion [20,23]. For the
practical evaluation of equation (21) it is of advantage to
avoid the singularity associated with the largest classically
allowed impact parameter at which vRc = 0 by replacing
dΘ/db in equation (21) by a corresponding derivative with
respect to the radial velocity vRc

I(θ) =
2πV 2

12R
2
c

~|F |v2 sin θ
|
∑
i

∣∣∣∣∣ dΘ

dviRc

∣∣∣∣∣
− 1

2

li exp(iφi)|
2. (24)

As well known, other singularities, e.g. the ones associ-
ated with rainbows (dΘ/dbi = 0) for attractive potentials
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Fig. 5. Stueckelberg maxima in the experimental differen-
tial cross sections (dots) and optimization of the B2Σ poten-
tial by quantum theory: (- - -) using reference potential [28],
(—) using optimized potential determined in reference [29].
This example is for a detuning of +200 cm−1. For compari-
son with experiment the calculated data are transformed to
laboratory scattering angle and final Na velocity.

or satellites (F = 0) can in principle be treated by more
sophisticated methods involving higher-order or uniform
approximations. More important, in particular for a realis-
tic modelling of the final-state distributions, is the imple-
mentation of nonadiabatic coupling effects in the upper
state manifold. Rotational (Coriolis) coupling has been
studied extensively in the past for simple S→P transitions
on a semiclassical level [24,25]. Theory here has focused
to great extent around the concept of a decoupling (lock-
ing) radius describing the effect of the transition from the
molecular to the free-atom coupling of electronic angu-
lar momentum. A classical rotation model based on this
concept has also been applied to depolarization in opti-
cal collisions to describe polarization effects [19,26]. At
present we do not attempt to generalize our simple semi-
classical approach that will be used together with the full
quantum method which gives unambiguous results also in
the more complex situations.

3 Results

3.1 Differential optical collision cross sections (DOCS)

In Figure 3 we show a typical differential cross section
for optical collisions with excitation in the blue wing of
the Na resonance. The agreement between the quantum
and semiclassical results is almost perfect not consider-
ing of course the deviation at small angles and due to
rainbow scattering. Since in our semiclassical calculation
the branching into the fine-structure components is not
treated at all, the comparison is made with the quantum
results summed over the fine-structure components. The
spin-orbit coupling becomes important for R ≥ 10 a.u.
(see Fig. 1). A small residual difference of ∼ 1◦ in the
phase of the scattering amplitudes is mostly due to this
coupling. The cause may well be a dynamic phase shift
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Fig. 6. Stueckelberg maxima in the differential cross sections.
Comparison of quantum (—) and semiclassical (dots) results;
positive detuning (excitation of B2Σ). The data are trans-
formed to laboratory scattering angles and final Na velocities
as in Figure 5.

in the coupling region. The effects due to the change of
the coupling case and of the potential asymptote are too
small to account for this difference. This is further sup-
ported by calculations in which we set the spin-orbit in-
teraction Vso = 0 and the agreement between the quantum
and semiclassical calculations was found to improve even
more (Fig. 3). A similar high level of agreement between
quantun and semiclassical results holds quite generally in
all cases investigated here. Thus the semiclassical analysis
forms an excellent basis for the physical interpretation of
differential optical collisions.

The origin of the oscillations in the cross sections is
then immediately clear from the semiclassical picture: the
two signal contributions, as e.g. in Figure 2 for the case of
blue detuning, interfere with usually different phase and
weight factor in equation (21). The semiclassical calcu-
lations further provide a unique assignment of the or-
der of the maxima, ∆φ = ±2kπ, and minima, ∆φ =
±(2k+1)π, k = 0, 1, 2, .., in the differential cross sections.

In the red wing, we find a more complicated interfer-
ence pattern, see Figure 4. This is expected by the classi-
cal theory. The A2Π potential is attractive and in general
there are now four rather then two interfering contribu-
tions to the scattering amplitude, see Figure 2. Further-
more rapid oscillations occur due to the interference of
attractive and repulsive trajectories (positive or negative
Θ). They should be observable only with extremely high
angular resolution and disappear when some angular aver-
aging is performed. Then, as seen in Figure 4, a more reg-
ular interference pattern appears and the quantum results
are in complete agreement with the semiclassical analysis
as far as the phases are concerned. Some deviations in the
absolute magnitudes of the cross sections as well as in the
contrast of the structures are attributed to the more com-
plex excitation mechanism involving the two components
of the A2Π state.
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The Stueckelberg oscillations in the DOCS are strongly
dependent on the detailed intermolecular potentials in-
volved. For the NaKr system only the X2Σ ground state
and the A2Π terms have been characterized experimen-
tally by spectroscopic methods [27]. Information on the re-
pulsive B2Σ state potential cannot be obtained in this way
and correspondingly the potential is known with much less
accuracy. There are however model potential calculations
by Düren et al. [28] which have been used here as reference
potential. We determined an improved B2Σ1/2 potential
such as to reproduce the observed maxima in the DOCS
(Fig. 5). In the process of optimizing potential parameters
the semiclassical approach is very effective. However all fi-
nal results were confirmed by the quantum calculations,
see Figure 6. More details on this procedure and an accu-
racy estimate of the final potential (see Fig. 7) are given
in [29].

3.2 Optical collisions with polarized light and collision
geometry

The reflection symmetry of the electronic wave function
at the scattering plane is a constant of motion also for
optical collisions. For the following it is therefore conve-
nient to work with the scattering amplitudes defined for
the cartesian rather than the spherical field components
that were used in equation (17)

fx =
−(f1 − f−1)

√
2

;

fy =
i(f1 + f−1)
√

2
;

fz =f0. (25)

Quite generally, the observedintensity then depends on

the polarization of the exciting light according to (i, j =
x, y, z)

I(θ) = Re
∑
ij

f i∗f j =
∑
ij

Aij(θ)EiEj (26)

where Aij is defined by equation (26) and is independent
of the field amplitude. For the characteristic situation pre-
vailing on the blue side (∆ω > 0) of the NaKr optical colli-
sion spectrum, the interferences in the differential spectra
arise by the superposition of only two paths. In this case
the Stueckelberg patterns are very pronounced and can
easily be used to obtain geometric information on the col-
lision pair at the instant of excitation.

3.2.1 Initial alignment and average Condon vectors

We consider excitation by light polarized linearly in the
scattering plane. By rotating the field vector in the plane
until maximal scattering intensity occurs one determines
the initial alignment angle α of the excited charge cloud
at a given scattering angle. Intuitively this is equivalent to
an average Condon vector. The observed intensity at each
scattering angle depends on the angle αp of the electric
field vector Ep (measured from the collision plane z axis)
by

I(θ, αp) = |fx(θ) sinαp + fz(θ) cosαp|
2. (27)

Figure 8 shows the polarization angle αp = αcoh at which
maximal intensity is found according to equation (27).
As function of the scattering angle one notices a continu-
ous trend with strong variations superimposed around the
minima in the differential cross sections. This behaviour
is well understood and reproduced by the semiclassical
analysis. Here the differential cross section for the situa-
tion prevailing for blue detuning is

I(θ, αp) =|w1/2
1 cos(α1 − αp) exp(iφ1)

+ w
1/2
2 cos(α2 − αp) exp(iφ2)|2. (28)

With this αcoh is found to be (mod π/2)

αcoh =

ᾱ+
1

2
arctan

(1− w) sin(α2 − α1)

(1 + w) cos(α2 − α1) + 2w1/2 cos(φ2 − φ1)
·

(29)

Here w = w1/w2 is the relative weight of the two con-
tributing trajectories, with wi = pibi/ sin θ|dΘ/dbi| as
in equation (21), φi are the corresponding phases, and
ᾱ = (α1 + α2)/2 is the arithmetic mean of the two Con-
don direction angles. As seen in the figure the quantum
and semiclassical predictions agree very well again both
in the structures due to the interference as well as in their
respective magnitudes. A small difference in the relative
phase has the same origin as discussed in Section 3.1. As
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Fig. 8. Quantum and classical main axes directions of the
initial alignment tensor leading to maximal intensity by ex-
citation with linearly in-plane polarized light. Heavy solid
line: Quantum result, dot-dashed: semiclassical coherent re-
sult, long-dashed: semiclassical incoherent average. The short
dashed and solid lines show the angular positions of the two
Condon vectors. The incoherent result represents the average
direction of the Condon vectors. Detuning +200 cm−1, kinetic
energy 200 cm−1.

special cases we consider the initial alignment angle α at
the maxmima and minima of the differential cross section

αcoh = ᾱ+
1

2
arctan

(1− w) sin(α2 − α1)

(1 + w) cos(α2 − α1)± 2w1/2
·

(30)

From an analysis of equations (29) and (30) it follows that
α lies generally in between the directions of the two sepa-
rate Condon vectors. Near the interference minima an op-
timal signal is reached for a completely different direction.
This arises formally from small values of the denominator
(1 +w) cos(α2 − α1)− 2w1/2. In Figure 8 also the case of
incoherent averaging the two Condon waves with

αinc = ᾱ+
1

2
arctan{

1− w

1 + w
tan(α2 − α1)} (31)

is given which apart from the region of the minima in
the DOCS compares quite well with the quantum value of
α. The incoherent average further applies if the coherent
average Condon vector is monitored with low angular res-
olution. One can also show that αinc is a weighted average
of the two angles α1 and α2 according to

αinc = q1α1 + q2α2 (32)

with

q1

q2
=

arccot[(w−1+cos 2(α2−α1))/ sin 2(α2−α1)]

arccot[(w+cos 2(α2−α1))/ sin 2(α2− α1)]
;

q1 + q2 = 1. (33)

10 20 30 10 20 30
scattering angle θcm

10 20 30

  0
0

 20
0

 40
0

 60
0

 80
0

100
0

120
0

140
0

160
0

E

Fig. 9. Collision geometry and excitation by linear polarized
light: Variation of the interference pattern with the direction
of the polarization for positive detuning +200 cm−1, kinetic
energy 1000 cm−1. The polarization is in the collision plane, the
polarization angle relative to the initial velocity is indicated in
the boxes. The insets show the Condon vectors, which are the
same in all cases and the polarization vector. The oscillations
disappear, when the polarization is at right angles to one of
the Condon vectors, e.g. at 160◦.

In this way αinc is a direct measure of the average direction
of the Condon vectors. Experimental results can be found
in [30].

3.2.2 Separate Condon vectors

The determination of the directions of the two separate
Condon vectors is possible as well. By choosing the po-
larization at right angle to one of the Condon vectors the
Stueckelberg interference pattern is suppressed. Thus the
angular positions of the single Condon vectors can be iden-
tified by looking at those polarization angles for which a
minimal variation occurs in the differential cross sections
(Fig. 9). This has also been realized experimentally [30].

Next we consider excitation of the collision pair by
light which is circularly polarized in the collision plane.
For the cases of right (+) and left (−) circular polarization
the quantum differential cross section is

I(θ,±) = |fz(θ)± ifx(θ)|2. (34)

The results of Figure 10 show a characteristic phase dif-
ference for the two orientations. The semiclassical analysis
offers a simple explanation by

I(θ,±) =|w1/2
1 exp(±iα1) exp(iφ1)

+ w
1/2
2 exp(±iα2) exp(iφ2)|2. (35)

Thus the two signal contributions have to be superim-
posed with different phases for right and left circular po-
larization. The phase difference amounts to

φ+ − φ− = 2(α1 − α2). (36)
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Fig. 10. The differential optical collision cross section for ex-
citation with in-plane left (dashed) and right (solid line) cir-
cularly polarized light; Detuning +200 cm−1, kinetic energy
200 cm−1.

As demonstrated in [30] this opens the possibility to mea-
sure the angle between the Condon vectors. It is further
seen from the semiclassical analysis that the Stueckelberg
oscillations can be shifted to an arbitrary position by us-
ing an adequate elliptic polarization. As an example, for a
linear polarization direction between the Condon vectors,
the Stueckelberg maxima occur in the middle between the
maxima for the two circular polarization cases. By choos-
ing the linear polarization at right angles, the maxima and
minima are interchanged.

Quite generally, methods as discussed in this section
are capable, at least in principle, to determine the separate
Condon vectors and their relative weights also in cases,
when there are more than two Condon vectors.

3.3 Final state analysis: Orientation, alignment and
fine-structure interactions

The final state of the alkali atom is characterized by the
population ratio of the fine structure components and
by its polarization properties, which are most readily ex-
pressed in terms of orientation and alignment.

3.3.1 Orientation and alignment

For a situation with unpolarized atoms before the colli-
sion and with the electric vector in the collision plane, the
final orientation tensor T 1 ∼< J > by reflection symme-
try must point into the y direction, i.e. at right angles to
the scattering plane. A choice of the electric vector out-
side the scattering plane breaks the reflection symmetry
and can lead to nonvanishing components < Jx > and
< Jz >. For excitation of a molecular Σ state, only the in-
plane component of the electric field is active. In this case
< Jx >=< Jz >= 0, even when the field is out-of-plane.
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Fig. 11. Differentially resolved orbital orientation for the
2P1/2 (dashed) and 2P3/2 (solid line) components; Detun-
ing +200 cm−1, kinetic energy 200 cm−1.

The origin of orientation is the rotational coupling by
the Coriolis operator −ly Jy/mR2 (see Eq. (5)), which
mixes molecular terms with different Ω and decouples the
electronic angular momentum from the internuclear axis
at large distances. It leads already to a nonvanishing ori-
entation if only a single classical trajectory contributes
to the signal [25]. In addition, the coherent superposition
of contributions from different trajectories in general re-
sults in a nonvanishing orientation, even when the single
contributions do not possess an orientation. This depends
strongly on the relative phase of the contributions, and
an orientation with such an origin should be correlated to
the Stueckelberg interference pattern.

In Figure 11, we show an example for the behaviour
of the orientation in a differential optical collision. The
fine-structure interaction seems to have a large effect on
the orientation. One notices a much smaller < Jy >
value for the 2P1/2 component than for the 2P3/2 com-
ponent. As a guideline one can compare with the ratio
< Jy >3/2 / < Jy >1/2= 5/2 following on general grounds
in the limit of a sudden transition through the region
where the fine-structure interaction operates. The same
limit applies if the spin-orbit coupling is small with re-
spect to Coulombic and rotational interactions. Note that
in the 2P1/2 case, rotational coupling is indeed less im-
portant, because the energy gap to the nearest state with
Ω = 3/2 value is comparatively large. Rotational coupling
is expected to be much more effective between those two
Ω = 1/2 and Ω = 3/2 components, which become de-
generate when they asymptotically reach the 2P3/2 state.
For the case shown in Figure 11 we conclude from the
vanishing of < Jy > near the maxima of the differential
cross section that the orientation observed at other angles
is due only to the interference effect.

For excitation of a Π state also the excitation pro-
cess itself can break the planar reflection symmetry and
thereby transfer orientation to the collision system if the
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Fig. 12. Differentially resolved orbital alignment angle αal

(solid line) for the 2P3/2 component; Detuning +200 cm−1,
kinetic energy 200 cm−1. For comparison also the initial align-
ment angle αav of Figure 8 is shown. The inset indicates the
meaning of the angles and the trajectory schematically. The
difference β = αal − α is an average rotation angle of the elec-
tronic orbital during the collision.

light has components both in and perpendicular to the
collision plane. This leads to a generally much larger orien-
tation relative to excitation of a Σ state. Such a situation
arises always for isotropic collisions in cell experiments
performed with circularly polarized light.

A nonzero value of the alignment tensor T 2 is pos-
sible only for the 2P3/2 level. In cartesian coordinates,

T 2
ij ∼<

1
2 (JiJj + JjJi) −

1
3δijJ(J + 1) > is character-

ized by its main axes. By reflection symmetry, two of
the main axes are in the scattering plane. The direction
of the major main axis defines the final alignment angle
which characterizes the direction into which the Na(2P3/2)
wave function points after the collision. Comparing as in
Figure 12 the average Condon vector (Sect. 3.2) and the
final alignment angle gives an angle β, through which the
wave function has been rotated on average between exci-
tation and decoupling. In more detail the angle β can also
be obtained for the separated trajectories by the proce-
dure of Section 3.2.2 to select a specific Condon vector.
The rotation angle β has a relatively small value, typi-
cally below 10◦, which is consistent with calculations of
the alignment tensor under thermally averaged isotropic
conditions. The experimental results of Behmenburg and
Ermers [13] require larger rotation angles leading to larger
depolarization. It seems that the decoupling occurs too
early with the present potentials. Since we are quite sure
about the accuracy of the potential in the inner region,
this indicates the necessity of some adjustment also of the
long-range parts of the BΣ and AΠ potentials.
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Fig. 13. Differentially resolved relative 2P1/2 fraction of the
total 2P excitation. For negative detuning, an angular average
with a resolution of 2◦ was performed.

3.3.2 Fine-structure ratios

In Figure 13, results for the relative excitation probabil-
ities of the final 2P1/2 and 2P3/2 states are given for
various detunings and collision energies. In all cases the
data are characterized by an almost angle-independent av-
erage value on which stronger variations of the minima in
the differential cross sections (Figs. 3 and 4) are super-
imposed. We conclude that the nonadiabatic transition
probability on a selected trajectory is only weakly depen-
dent upon the impact parameter. This is also supported
by the partial wave analysis of the coupled-channels cross
sections. The strong variations seen in Figure 13 are a
consequence of a small phase shift difference in the partial
differential cross sections for the 2P1/2 and 2P3/2 states.
In practice structures likes this or in the corresponding
polarization data, Figures 11 and 12, will be difficult to
observe due to the low intensities near the Stueckelberg
minima.

The excitation probabilities show a predominantly di-
abatic correlation between the molecular and the atomic
channels: excitation of the upper B2Σ molecular state
populates preferentially the lower 2P1/2 atomic state.

Correspondingly excitation of the lower A2Π molecular
states mostly leads to the upper 2P3/2 atomic states.

This is a consequence of the intersection of the B2Σ and
A2Π curves already shown in Figure 1. A Landau-Zener
analysis of this crossing between the Ω = 1/2 levels leads
to large nonadiabatic transition probabilities of order 1,
i.e. the system behaves in this region almost diabatically.
The final populations will also depend on the second cou-
pling region (R ' 15 a.u.) where the long-range Σ − Π
separation is again comparable to the fine-structure split-
ting ∆ (17.2 cm−1 for Na). Due to the presently unknown
accuracy of the long-range parts of the potentials and
also to the lack of experimental fine structure population
ratios measured with the differential detection method,
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we limit ourselves to a preliminary discussion. As seen
in Figure 7, an adjustment of the long-range potential
for the B2Σ state was performed resulting in the modi-
fication M2 in order to better reproduce the experimen-
tal 2P1/2/2P3/2 ratios from gas cell experiments. For

∆ω = 200 cm−1 the 2P1/2/2P3/2 ratios measured by
Behmenburg and Ermers [13] at T = 440 K are 2.5, while
Havey et al. [31] report a value of 3.5 for 303 K. Our ther-
mally averaged coupled-channels calculations give 2.2 and
2.8 for these temperatures while the single-energy value
for a collision energy of 200 cm−1 is about 3. A similar
comparison in the red wing at ∆ω = −100 cm−1 leads
to values of 0.3-0.4 for the gas cell experiments and 0.3
in our calculations. We also note the trend to reach the
sudden-impact limit, 2P1/2/2P3/2=0.5, on both sides of
the resonance line at higher collision energies.

The preceeding examples show that the final state
analysis of differential optical collisions can be expected
to form a very sensitive probe for the nonadiabatic cou-
pling regions, and especially for the asymptotic parts of
the excited molecular potentials.

4 Summary

The investigation of optical collisions under differential
scattering conditions opens a variety of new methods for
the observation of atomic collisions. The examples dis-
cussed in the preceding chapters represent only a few of
them. More general categories of experiments can be con-
sidered along the following lines.

(1) Determination and testing of interatomic poten-
tials: As illustrated by Figure 5 the method has already
been successfully applied to the repulsive NaKr B2Σ po-
tential curve [29]. This potential curve has been deter-
mined with an estimated accuracy of ±25 cm−1, but a
few cm−1 appear within reach. Repulsive potentials are
often not accessible by spectroscopic methods. Even when
spectroscopic methods apply, the results frequently have
an accuracy comparable to that of the methods discussed
here. Attractive potentials show a much richer interfer-
ence structure than repulsive ones, see Figure 4. Differ-
ential optical collision data are therefore expected to be
considerably more sensitive to the potential curve for at-
tractive than for repulsive potentials. For regions acces-
sible by the Franck-Condon principle in an optical colli-
sion the new methods should be capable to compete with
spectroscopic methods not only for repulsive but also for
attractive potentials. For comparison spectroscopic exper-
iments in many practical cases only probe rather limited
regions of the internuclear distance, whereas differential
optical collision data are sensitive to extended, in partic-
ular the long and intermediate R ranges.

(2) Observation of the geometric properties of the collision
complex: The direct observation of the geometric proper-
ties of a collision complex is presently a completely new
and fascinating experimental tool, which in future will

have many applications also to more complicated colli-
sional systems, e.g. atom - molecule collisions. Investiga-
tions with atoms are valuable test cases, which help us to
explore and to optimize the power of the new tool. Fig-
ure 9 demonstrates, how the directions of the two Condon
vectors can be read out immediately from the differential
cross sections. A refined analysis of the Stueckelberg pat-
tern and its variation with the polarization will allow to
determine more geometric details, e.g. the relative weight
of the signal contributions. or the four Condon vectors,
which contribute at negative detuning.

(3) Manipulation of collisions: Figure 9 demonstrates that
the optical collision signal can be switched on and off by
simply varying the linear polarization. This works even
without resolving the interference pattern: the average in-
tensity goes down to very small values for certain polar-
ization directions. Similarly, Figure 9 demonstrates, how
the process may be switched from one to the other pos-
sible trajectory by changing the linear polarization corre-
spondingly. Another closely related example is provided
by Figure 10. The collision pair forms an interferometer,
which can be detuned arbitrarily from outside by varying
the polarization. The practical applicability of these tech-
niques may appear to be quite limited, when one looks
at the systems discussed here. It is not difficult, however,
to construct much more promising examples by adding
e.g. one or more electronic states, or by going to atom -
molecule systems.

(4) Analysis of the state of the collision products, i.e. the
population ratio and the alignment and orientation of the
final states: Such studies are sensitive, in the first instance,
to the nonadiabatic processes, which occur on the passage
of the collision pair from small to large internuclear dis-
tances (the transition from the regime of Hund’s coupling
cases a and b to that of the coupling cases c and e). For
example at a positive detuning we populate exclusively
the molecular B2Σ state. When we use, in addition, the
techniques described in the preceding section and select
a single trajectory, we prepare the collisional system with
perfectly defined initial conditions immediately before it
enters the nonadiabatic coupling region. The investigation
of the electronic state after the collison then provides an
ideal tool for the study of the nonadiabatic process. Ex-
periments of this type have been reported so far only in
a preliminary form [32]. We expect them to be among
the most important applications of the new techniques in
the future. When two or more trajectories are allowed to
contribute to the signal, the polarization properties of the
final states are the result of the nonadiabatic couplings
as well as of the details of their interferences. This is il-
lustrated by the regular structures in Figures 11, 12, 13.
Complicated effects can arise in this way, as, for instance,
the transfer of orientation: The orientation of the final
state is expected to be different for excitation with left and
right circularly polarized light. Effects like this certainly
provide an extremely sensitive tool for the investigation of
both the potential curves and the nonadiabatic couplings.
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Appendix A: Matrix elements in the molecular
channel basis

For the matrix elements of the electronic part of the
Hamiltonian in the molecular channel basis one obtains

< n′| < J ′M ′l′J ′|Hel + Vso|JMlJ > |n >

= δn′nδJ ′J δM′M
[(2l′+1)(2l+1)]1/2

2J+1

×
∑
Ω

C(J ′l′J ;Ω0Ω)C(JlJ ;Ω0Ω)<J ′Ω|Hel+Vso|JΩ>.

(37)

Hel and Vso are diagonal in Ω and further Vso is assumed
here to be approximatively diagonal also in J

< J ′Ω|Hel|JΩ >

=
∑
Λ

C(LSJ ;ΛΣΩ)C(LSJ ′;ΛΣΩ)V|Λ|(R) (38)

< J ′Ω|Vso|JΩ >

∼ δJJ′
g

2
[J(J + 1)− L(L+ 1)− S(S + 1)]. (39)

With relations like a|n >=
√
nω|n − 1 > the radiative

coupling term takes the form

< n′| < J ′M ′l′J ′|Vrad|JMlJ > |n >

= δn′n−1C(J 1J ′;MqM ′) < J ′l′J ′||Vrad||J lJ > (40)

< J ′l′J ′||Vrad||J lJ >

=
e

me

(
2π~nω
ωV

)1/2
[(2l′ + 1)(2l+ 1)]1/2

2J ′ + 1

×
∑
Ωσ

C(J ′l′J ′;Ω0Ω)C(JlJ ;Ω0Ω)

× C(J 1J ′;ΩσΩ′) < J ′Ω′|pσ|JΩ > . (41)

As well known the momentum coupling in equation (40)
is equivalent to the more standard expression in terms of
a dipole coupling

e

me
(2π~nω/ωV )1/2pσ = (2π~ωnω/V )1/2(erσ)

= (2πIω/c)
1/2µσ

= E µσ/2 (42)

where the µσ are the dipole moments of the molecular
transitions and Iω = ~ωnωc/V and E are the laser inten-
sity and the corresponding field amplitude.

Appendix B: Atomic dressed-state basis at
large internuclear separations

The interaction Vrad remains finite for optical collisions in
the region of asymptotic internuclear separations and the

free-atom states are no longer eigenstates of the asymp-
totic limit of the Hamiltonian of equation (2). The scat-
tering matrices are therefore defined for transitions among
the atomic “dressed states”. For large internuclear separa-
tions the transition dipole becomes Ω- und R-independent
and the radiative coupling is [33]

< J ′l′J ′||Vrad||J lJ >

= (−)J
′+J−1−l{(2J + 1)(2J ′ + 1)}1/2

×W (J ′JJ ′J ; 1l) < J ′||Vrad||J > δll′ (43)

with

< J ′||Vrad||J >= (−)J
′+L−1−S{(2J+1)(2L′+1)}1/2

×W (L′LJ ′J ; 1S)< L′||Vrad||L > . (44)

Therefore the channel functions formed with atomic
“dressed states” become at large R diagonal in l, but not
in J , M, J and n and will be denoted by |αl > with

{
l2

2mR2
+Hel + Vso +Hph + Vrad}|αl >= εαl|αl > (45)

In the low-field regime it is possible to represent the
asymptotic dressed state channel functions using first-
order perturbation theory as

|αl >= |JMlJn >

+
< J ′M ′lJ ′n− 1|Vrad|JMlJn >

εJ − εJ′ + ~ω
|J ′M ′lJ ′n− 1 >

|α′l >= |J ′M ′lJ ′n′ >

+
< JMlJn′ + 1|Vrad|J ′M ′lJ ′n′ >

εJ′ − εJ − ~ω
|JMlJn′ + 1 > .

(46)

The energies εαl are unaffected up to second-order in Vrad,
e.g.

εαl = εJ +
l(l + 1)

2mR2
+ n~ω (47)

The atomic “dressed states” defined by equation (46)
therefore are arbitrarily close to the unperturbed states
and α may then as well replaced by the quantum num-
bers JMJnq. The q and M dependencies separate by

|αl >=|JMlJn > +δnn′±1C(J 1J ′;MqM ′) (48)

×
< J ′lJ ′||Vrad||J lJ >

εJ − εJ′ + (n− n′)~ω
|J ′lJ ′M ′n′ > .

Due to the asymptotic degeneracy in J a diagonalization
of equation (45) will in general not lead to the eigenvectors
of equation (46) but rather result in some linear combi-
nation with ill-defined J . The effect is treated by a basis
transformation to the standard atomic “dressed states”
and calculation of the S-matrix in this basis. From then
one no further distinction is necessary between dressed
and undressed channels, since any corrections are of higher
order in the field. For the S-matrix determination the pro-
cedure is however essential since otherwise a unique result
cannot be obtained and the S-matrices show oscillatory
behaviour in R similar to Rabi oscillations.
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